<div dir="ltr"><div><div><div>Hi Paul,<br><br></div>Apologies as my math is a bit rusty but isn&#39;t the sign of the eigenvector related to the sign of its corresponding eigenvalue? In that case if you make sure that all of the eigenvalues are positive then all of their corresponding eigenvectors should be aligned properly. If that&#39;s the case and you have access to the eigenvalues of the eigenvectors you could use the calculator or python calculator to properly orient the eigenvectors.<br>
<br></div>In any case, if you can come up with an algorithm that properly orients the eigenvectors you should be able to do that in the python calculator or calculator filters. If not, then things could get a bit hairy as far as computationally figuring out which is the &quot;proper&quot; direction your eigenvalues should have.<br>
<br></div>Regards,<br>Andy<br></div><div class="gmail_extra"><br><br><div class="gmail_quote">On Fri, Aug 23, 2013 at 3:38 PM, pwhiteho <span dir="ltr">&lt;<a href="mailto:pwhiteho@masonlive.gmu.edu" target="_blank">pwhiteho@masonlive.gmu.edu</a>&gt;</span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">




<div>
<div style="direction:ltr;font-size:10pt;font-family:Tahoma">The term &quot;eigenvector&quot;, used to describe the principal directions of a tensor, is a bit of a misnomer since it&#39;s not a &quot;vector&quot; as interpreted by the Stream Tracer filter - it&#39;s
 more accurately bi-directional like tension/compression and could be termed &quot;eigenaxis/eigenaxes&quot;. When interpreted as a vector, there is an inherent sign ambiguity in each eigenvector - the sign is indeterminate and one is free to choose + or -, and that
 is exactly what Mathematica does ( likely true for other routines also ).<br>
<br>
I&#39;ve been using Mathematica to prototype computations for the investigation of tensor topology which I then visualize in ParaView. Eigen-decomposition of a tensor field at each grid point returns an orthonormal set of eigenvectors, uncorrelated with any neighbors.
 Taken separately, each eigenvector field exhibits large regions of smoothly varying orientation, but there are systematic and random reversals of orientation that confound the Stream Tracer filter, sending streamlines wandering around the field. What is needed
 is a true tangent curve ( tensor line ) integrator that would avoid &quot;doubling back&quot; as the &quot;streamline&quot; propagates, similar to the scheme of Weinstein, et. al., ( IEEE VIS&#39;99 ) which computes the dot product of the incoming propagation vector with the eigenvector;
 and if near -1, negate the outgoing propagation vector. This can also be fancied-up to accommodate noisy initial tensor data as in Weinstein.<br>
<br>
I think I would be taking on too much at this point in learning to write my own filter so have been exploring ways to pre-process the eigenvector fields before visualizing in Paraview, but I ask:<br>
1. Have I missed something in existing filters that would handle this?<br>
2. Can the existing Stream Tracer be modified?<br>
3. Does the eigenvector routine in ParaView yield the same sign ambiguity among uncorrelated computations?<br>
<br>
Thanks,<br>
Paul W<br>
<br>
</div>
</div>

<br>_______________________________________________<br>
Powered by <a href="http://www.kitware.com" target="_blank">www.kitware.com</a><br>
<br>
Visit other Kitware open-source projects at <a href="http://www.kitware.com/opensource/opensource.html" target="_blank">http://www.kitware.com/opensource/opensource.html</a><br>
<br>
Please keep messages on-topic and check the ParaView Wiki at: <a href="http://paraview.org/Wiki/ParaView" target="_blank">http://paraview.org/Wiki/ParaView</a><br>
<br>
Follow this link to subscribe/unsubscribe:<br>
<a href="http://www.paraview.org/mailman/listinfo/paraview" target="_blank">http://www.paraview.org/mailman/listinfo/paraview</a><br>
<br></blockquote></div><br></div>