<div dir="ltr">Awesome! Thanks for the help, Andy!<br><br>Tim<br></div><div class="gmail_extra"><br><br><div class="gmail_quote">On Thu, Mar 13, 2014 at 12:35 PM, Andy Bauer <span dir="ltr"><<a href="mailto:andy.bauer@kitware.com" target="_blank">andy.bauer@kitware.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div>Hi Tim,<br><br>The class that does that computation is called vtkCellDerivatives. It looks like the part of that code that does the strain computation is:<br>
tens->SetComponent(0,0, derivs[0]);<br>
tens->SetComponent(0,1, 0.5*(derivs[1]+derivs[3]));<br> tens->SetComponent(0,2, 0.5*(derivs[2]+derivs[6]));<br> tens->SetComponent(1,0, 0.5*(derivs[1]+derivs[3]));<br> tens->SetComponent(1,1, derivs[4]);<br>
tens->SetComponent(1,2, 0.5*(derivs[5]+derivs[7]));<br> tens->SetComponent(2,0, 0.5*(derivs[2]+derivs[6]));<br> tens->SetComponent(2,1, 0.5*(derivs[5]+derivs[7]));<br> tens->SetComponent(2,2, derivs[8]);<br>
<br></div>My suggestion would be to use one of the gradient filters (either Compute Derivatives or Gradient of Unstructured Data Sets) and then either use the Calculator filter (slower but simpler) or the Python Programmable filter (faster but more complicated) to compute your desired results.<br>
<br></div>Regards,<br>Andy<br></div><div class="HOEnZb"><div class="h5"><div class="gmail_extra"><br><br><div class="gmail_quote">On Thu, Mar 13, 2014 at 3:23 PM, Tim Bhatnagar <span dir="ltr"><<a href="mailto:tim.bhatnagar@gmail.com" target="_blank">tim.bhatnagar@gmail.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div>Fair enough.... I'd like to think that since the infinitesimal strain tensor is just a simplified version of the Green-Lagrange tensor (really, some usually-small terms just get assumed to be zero), that the Paraview designers utilized a fully-designed Green-Lagrange formulation, which will approximate to the infinitesimal strain tensor then the strains are small...<br>
<br></div>But it'd be great to get a definitive answer.. otherwise I ened to think about creating my own filter to determine the finite strain tensor.<br><br>Thanks for the comment,<br><br>Tim<br></div>
</blockquote></div><br></div>
</div></div></blockquote></div><br><br clear="all"><br>-- <br>Tim Bhatnagar<br>PhD Candidate<br>Orthopaedic Injury Biomechanics Group<br>Department of Mechanical Engineering<br>University of British Columbia<br><br>Rm 5000 - 818 West 10th Ave.<br>
Vancouver, BC<br>Canada<br>V5Z 1M9<br><br>Ph: (604) 675-8845<br>Fax: (604) 675-8820<br>Web: <a href="http://oibg.mech.ubc.ca" target="_blank">oibg.mech.ubc.ca</a><br>
</div>