CMake Performance Tips

From KitwarePublic
Revision as of 19:25, 13 August 2012 by Andreas Mohr (talk | contribs) (Many-to-one dependencies, include guards, new sections.)
Jump to navigationJump to search

While CMake itself is already very fast, there are some tuning things you can do to ensure works as fast as possible.

CMake build time

Build it with optimization enabled

Ok, this is obvious, but anyway. Let's say you build CMake yourself without any special settings, e.g.

$ cmake ..
$ make

If you do it this way, you will get a CMake with optimizations turned off. There are different ways to get an optimized build. You can select one of the predefined build types:

$ cmake -DCMAKE_BUILD_TYPE=RELEASE ..
$ make

Also possible are RELWITHDEBINFO and MINSIZEREL.

or

$ export CXXFLAGS=-O2
$ cmake ..
$ make

or

$ export CXXFLAGS=-O2
$ cmake ..
$ make edit_cache (or ccmake ..)
... edit CMAKE_CXX_FLAGS in the advanced view
$ make

CMake built with optimizations enabled can give you an almost 50% performance boost (time for running CMake on VTK went down from 25 s to 14 s).

Use LIST(APPEND ...)

There are two ways to append values to a variable in CMake:

  SET(myVar ${myVar} newItem)

and since CMake 2.4 there is the new LIST() command:

  LIST(APPEND myVar newItem)

LIST(APPEND ...) is for large lists and appends much faster than using SET().


CMake configure time

Reduce add_custom_commands DEPENDS lists

If your build setup happens to contain many targets which all depend on a sizeable list of file dependencies, then it might be useful to establish one single custom command (plus its associated target) which DEPENDS on those many files and creates one single OUTPUT "stamp file" ("one of the files changed" watchdog file) which can then be DEPENDS-fed into all affected add_custom_command()s as a single file dependency. A very nice way to figure out whether this applies to your build environment is to do: <source lang="bash"> ninja -t graph > /tmp/graphviz.log dot -Tsvg /tmp/graphviz.log >/tmp/cmake_ninja.svg </source> and watch the resulting graph monstrosity in awe :)

Use an include guard

For CMake modules (files referenced via include() statement), you could use something like: <source lang="CMake"> if(my_module_xyz_included)

 return()

endif(my_module_xyz_included) set(my_module_xyz_included true) </source> at the beginning of your module file, to avoid repeated parsing within sibling scopes (sub directories, etc.), which also cuts down on amount of <source lang="bash"> cmake --trace </source> log traffic.

Split modules into functions/definitions

As a general hint, it might be useful to split module files into containing either clean stateless non-specific (generic) helper functions or content which defines specific settings and calls some helper functions.