Source code for paraview.benchmark.manyspheres

import datetime as dt
from paraview import servermanager
from paraview.simple import *
from paraview.benchmark import *

# import logbase, logparser

logbase.maximize_logs()
records = []
n0 = dt.datetime.now()


[docs]def get_render_view(size): '''Similar to GetRenderView except if a new view is created, it's created with the specified size instead of having t resize afterwards ''' view = active_objects.view if not view: # it's possible that there's no active view, but a render view exists. # If so, locate that and return it (before trying to create a new one). view = servermanager.GetRenderView() if not view: view = CreateRenderView(ViewSize=size) return view
[docs]def save_render_buffer(fname): '''Similar to SaveScreenshot except a re-render will not be triggered''' from vtkmodules.vtkRenderingCore import vtkWindowToImageFilter w = GetRenderView().SMProxy.GetRenderWindow() w2i = vtkWindowToImageFilter() w2i.ReadFrontBufferOff() w2i.ShouldRerenderOff() w2i.SetInput(w) w2i.Modified() png = PNGWriter() png.Input = w2i.GetOutput() png.FileName = fname png.UpdatePipeline()
[docs]def flush_render_buffer(): '''When running as a single process use the WindowToImage filter to force a framebuffer read. This bypasses driver optimizations that perform lazy rendering and allows you to get actual frame rates for a single process with a GPU. Multi-process doesn't need this since compositing forces the frame buffer read. ''' # If we're not using off-screen rendering then we can bypass this since # the frame buffer display will force a GL flush w = GetRenderView().SMProxy.GetRenderWindow() if not w.GetOffScreenRendering(): return from vtkmodules.vtkRenderingCore import vtkWindowToImageFilter from vtkmodules.vtkParallelCore import vtkMultiProcessController # If we're using MPI we can also bypass this since compositing will # for a GL flush controller = vtkMultiProcessController.GetGlobalController() if controller.GetNumberOfProcesses() > 1: return # Force a GL flush by retrieving the frame buffer image w2i = vtkWindowToImageFilter() w2i.ReadFrontBufferOff() w2i.ShouldRerenderOff() w2i.SetInput(w) w2i.Modified() w2i.Update()
[docs]def memtime_stamp(): global records global n0 m = logbase.get_memuse() n1 = dt.datetime.now() et = n1 - n0 print(et, m) n0 = n1 records.append([et, m])
[docs]def run(output_basename='log', num_spheres=8, num_spheres_in_scene=None, resolution=725, view_size=(1920, 1080), num_frames=10, save_logs=True, transparency=False, ospray=False): if num_spheres_in_scene is None: num_spheres_in_scene = num_spheres from vtkmodules.vtkParallelCore import vtkMultiProcessController from vtkmodules.vtkCommonSystem import vtkTimerLog controller = vtkMultiProcessController.GetGlobalController() view = get_render_view(view_size) if ospray: view.EnableRayTracing = 1 print('Generating bounding box') import math edge = math.ceil(math.pow(num_spheres_in_scene, (1.0 / 3.0))) box = Box() box.XLength = edge box.YLength = edge box.ZLength = edge box.Center = [edge * 0.5, edge * 0.5, edge * 0.5] boxDisplay = Show() boxDisplay.SetRepresentationType('Outline') print('Generating all spheres') gen = ProgrammableSource(Script=''' import math from vtkmodules.vtkParallelCore import vtkMultiProcessController from vtkmodules.vtkFiltersSources import vtkSphereSource from vtkmodules.vtkFiltersCore import vtkAppendPolyData from vtkmodules.vtkCommonDataModel import vtkPolyData try: num_spheres except: num_spheres = 8 try: num_spheres_in_scene except: num_spheres_in_scene = num_spheres try: res except: res = 725 edge = math.ceil(math.pow(num_spheres_in_scene, (1.0 / 3.0))) controller = vtkMultiProcessController.GetGlobalController() np = controller.GetNumberOfProcesses() p = controller.GetLocalProcessId() ns=lambda rank:num_spheres/np + (1 if rank >= np-num_spheres%np else 0) # Not sure why but the builtin sum() gives weird results here so we'll just # so it manually start=0 for r in range(0,p): start += int(ns(r)) end=start+ns(p) start = int(start) end = int(end) ss = vtkSphereSource() ss.SetPhiResolution(res) ss.SetThetaResolution(res) ap = vtkAppendPolyData() print(' source %d: generating %d spheres from %d to %d' % (p, end-start, start, end)) for x in range(start,end): i = x%edge j = math.floor((x / edge))%edge k = math.floor((x / (edge * edge))) ss.SetCenter(i + 0.5,j + 0.5,k + 0.5) ss.Update() pd = vtkPolyData() pd.ShallowCopy(ss.GetOutput()) # pd.GetPointData().RemoveArray('Normals') ap.AddInputData(pd) ap.Update() self.GetOutput().ShallowCopy(ap.GetOutput()) ''') paramprop = gen.GetProperty('Parameters') paramprop.SetElement(0, 'num_spheres_in_scene') paramprop.SetElement(1, str(num_spheres_in_scene)) paramprop.SetElement(2, 'num_spheres') paramprop.SetElement(3, str(num_spheres)) paramprop.SetElement(4, 'res') paramprop.SetElement(5, str(resolution)) gen.UpdateProperty('Parameters') print('Assigning colors') pidScale = ProcessIdScalars() pidScaleDisplay = Show() pidScaleDisplay.SetRepresentationType('Surface') if transparency: print('Enabling 50% transparency') pidScaleDisplay.Opacity = 0.5 print('Repositioning initial camera') c = GetActiveCamera() c.Azimuth(22.5) c.Elevation(22.5) print('Rendering first frame') Render() print('Saving frame 0 screenshot') fdigits = int(math.ceil(math.log(num_frames, 10))) frame_fname_fmt = output_basename + '.scene.f%(f)0' + str(fdigits) + 'd.png' SaveScreenshot(frame_fname_fmt % {'f': 0}) print('Gathering geometry counts') vtkTimerLog.MarkStartEvent('GetViewItemStats') num_polys = 0 num_points = 0 for r in view.Representations: num_polys += r.GetRepresentedDataInformation().GetNumberOfCells() num_points += r.GetRepresentedDataInformation().GetNumberOfPoints() vtkTimerLog.MarkEndEvent('GetViewItemStats') print('Beginning benchmark loop') deltaAz = 45.0 / num_frames deltaEl = 45.0 / num_frames memtime_stamp() fpsT0 = dt.datetime.now() for frame in range(1, num_frames): c.Azimuth(deltaAz) c.Elevation(deltaEl) Render() flush_render_buffer() memtime_stamp() fpsT1 = dt.datetime.now() if controller.GetLocalProcessId() == 0: if save_logs: # Save the arguments this was executed with with open(output_basename + '.args.txt', 'w') as argfile: argfile.write(str({ 'output_basename': output_basename, 'num_spheres': num_spheres, 'num_spheres_in_scene': num_spheres_in_scene, 'resolution': resolution, 'view_size': view_size, 'num_frames': num_frames, 'save_logs': save_logs, 'transparency': transparency, 'ospray': ospray})) # Save the memory statistics collected with open(output_basename + '.mem.txt', 'w') as ofile: ofile.write('\n'.join([str(x) for x in records])) # Process frame timing statistics logparser.summarize_results(num_frames, (fpsT1 - fpsT0).total_seconds(), num_polys, 'Polys', save_logs, output_basename) print('Points / Frame: %d' % (num_points))
[docs]def main(argv): import argparse parser = argparse.ArgumentParser( description='Benchmark ParaView geometry rendering') parser.add_argument('-o', '--output-basename', default='log', type=str, help='Basename to use for generated output files') parser.add_argument('-s', '--spheres', default=100, type=int, help='The total number of spheres to render') parser.add_argument('-n', '--spheres-in-scene', type=int, help='The number of spheres in the entire scene, including those not rendered.') parser.add_argument('-r', '--resolution', default=4, type=int, help='Theta and Phi resolution to use for the spheres') parser.add_argument('-v', '--view-size', default=[400, 400], type=lambda s: [int(x) for x in s.split(',')], help='View size used to render') parser.add_argument('-f', '--frames', default=10, type=int, help='Number of frames') parser.add_argument('-t', '--transparency', action='store_true', help='Enable transparency') parser.add_argument('-y', '--ospray', action='store_true', help='Use OSPRAY to render') args = parser.parse_args(argv) options = servermanager.vtkRemotingCoreConfiguration.GetInstance() url = options.GetServerURL() if url: import re m = re.match('([^:/]*://)?([^:]*)(:([0-9]+))?', url) if m.group(4): Connect(m.group(2), m.group(4)) else: Connect(m.group(2)) run(output_basename=args.output_basename, num_spheres=args.spheres, num_spheres_in_scene=args.spheres_in_scene, resolution=args.resolution, view_size=args.view_size, num_frames=args.frames, transparency=args.transparency, ospray=args.ospray)
if __name__ == "__main__": import sys main(sys.argv[1:])