Source code for paraview.detail.extract_selection

r"""This module is used by vtkPythonExtractSelection to extract query-based
selections. It relies on `paraview.detail.calculator`
to compute a mask array from the query expression. Once the mask array is obtained,
this filter will either extract the selected ids, or mark those elements as requested.
"""
from __future__ import absolute_import, print_function

try:
    import numpy as np
except ImportError:
    raise RuntimeError("'numpy' module is not found. numpy is needed for " \
                       "this functionality to work. Please install numpy and try again.")

import re
import vtkmodules.numpy_interface.dataset_adapter as dsa
import vtkmodules.numpy_interface.algorithms as algos
from vtkmodules.vtkCommonDataModel import vtkDataObject
from vtkmodules.util import vtkConstants

from . import calculator

# this module is needed to ensure that python wrapping for
# `vtkPythonExtractSelection` is setup correctly.
from paraview.modules import vtkRemotingCore


def _create_id_array(dataobject, attributeType):
    """Returns a VTKArray or VTKCompositeDataArray for the ids"""
    if not dataobject:
        raise RuntimeError("dataobject cannot be None")
    if dataobject.IsA("vtkCompositeDataSet"):
        ids = []
        for ds in dataobject:
            ids.append(_create_id_array(ds, attributeType))
        return dsa.VTKCompositeDataArray(ids)
    else:
        return dsa.VTKArray( \
            np.arange(dataobject.GetNumberOfElements(attributeType)))


[docs]def maskarray_is_valid(maskArray): """Validates that the maskArray is either a VTKArray or a VTKCompositeDataArrays or a NoneArray other returns false.""" return maskArray is dsa.NoneArray or \ isinstance(maskArray, dsa.VTKArray) or \ isinstance(maskArray, dsa.VTKCompositeDataArray)
[docs]def execute(self): inputDO = self.GetInputDataObject(0, 0) inputSEL = self.GetInputDataObject(1, 0) outputDO = self.GetOutputDataObject(0) assert inputSEL.GetNumberOfNodes() >= 1 selectionNode = inputSEL.GetNode(0) field_type = selectionNode.GetFieldType() if field_type == selectionNode.CELL: attributeType = vtkDataObject.CELL elif field_type == selectionNode.POINT: attributeType = vtkDataObject.POINT elif field_type == selectionNode.ROW: attributeType = vtkDataObject.ROW else: raise RuntimeError("Unsupported field attributeType %r" % field_type) # evaluate expression on the inputDO. # this is equivalent to executing the Python Calculator on the input dataset # to produce a mask array. inputs = [] inputs.append(dsa.WrapDataObject(inputDO)) query = selectionNode.GetQueryString() # get a dictionary for arrays in the dataset attributes. We pass that # as the variables in the eval namespace for calculator.compute(). elocals = calculator.get_arrays(inputs[0].GetAttributes(attributeType)) if ("id" not in elocals) and re.search(r'\bid\b', query): # add "id" array if the query string refers to id. # This is a temporary fix. We should look into # accelerating id-based selections in the future. elocals["id"] = _create_id_array(inputs[0], attributeType) try: maskArray = calculator.compute(inputs, query, ns=elocals) except: from sys import stderr print("Error: Failed to evaluate Expression '%s'. " \ "The following exception stack should provide additional developer " \ "specific information. This typically implies a malformed " \ "expression. Verify that the expression is valid.\n" % query, file=stderr) raise if not maskarray_is_valid(maskArray): raise RuntimeError( "Expression '%s' did not produce a valid mask array. The value " \ "produced is of the type '%s'. This typically implies a malformed " \ "expression. Verify that the expression is valid." % \ (query, type(maskArray))) # if inverse selection is requested, just logical_not the mask array. if selectionNode.GetProperties().Has(selectionNode.INVERSE()) and \ selectionNode.GetProperties().Get(selectionNode.INVERSE()) == 1: maskArray = algos.logical_not(maskArray) output = dsa.WrapDataObject(outputDO) if self.GetPreserveTopology(): # when preserving topology, just add the mask array as # vtkSignedCharArray to the output. vtkPythonExtractSelection should # have already ensured that the input is shallow copied over properly # before this method gets called. # Note: we must force the data type to VTK_SIGNED_CHAR or the array will # be ignored by the freeze selection operation from vtkmodules.util.numpy_support import numpy_to_vtk if type(maskArray) is not dsa.VTKNoneArray: insidedness = numpy_to_vtk(maskArray, deep=1, array_type=vtkConstants.VTK_SIGNED_CHAR) insidedness.SetName("vtkInsidedness") output.GetAttributes(attributeType).VTKObject.AddArray(insidedness) else: # handle extraction. # flatnonzero() will give is array of indices where the arrays is # non-zero (or non-False in our case). We then pass that to # vtkPythonExtractSelection to extract the selected ids. nonzero_indices = algos.flatnonzero(maskArray) output.FieldData.append(nonzero_indices, "vtkSelectedIds"); # print (output.FieldData["vtkSelectedIds"]) self.ExtractElements(attributeType, inputDO, outputDO) del nonzero_indices del maskArray